Aluminium to replace copper as a conductor in onboard power systems

This CAD drawing shows an innovative electrical connector based on aluminium conductors instead of copper. It's part of a project to remove obstacles to using this lighter, less expensive material in electric cars and other vehicles.
Image credit: TU Muenchen
Date:23 February 2011 Tags:

Electric power and electronics are playing an ever-increasing role in all kinds of vehicles. Currently copper is the conductive material of choice. But in comparison to aluminium copper is heavy and expensive. In particular for fully electric vehicles the switch to the cheaper and lighter aluminium would be an interesting option. That is why the optimisation of intricate power supply networks is now in the focus of engineering research. Scientists from the Technische Universitaet Muenchen (TUM), in collaboration with BMW engineers, have now found out what tricks make it possible to replace copper with aluminium.

At first glance it is not at all clear why copper is still used as conductor in modern electric or semi-electric vehicles – when aluminium is lighter and significantly less costly. However, before aluminium can replace copper in power supply systems, a number of technological challenges need to be surmounted. When temperatures are high – and there are many places in a car where that is the case – aluminium displays a distinct creep behaviour. Conventional connectors could thus not be used, as they would become loose with time.

One possible alternative – the use of aluminium-based elements in cables and copper-based elements in connection areas – also entails problems. Because there is a high electrochemical potential between a copper contact and an aluminium cable, this kind of wiring would be very prone to corrosion. Besides, joining copper to aluminium is rather demanding with the current state of technology. In order to counteract the aforementioned difficulties, scientists of the chairs for High Voltage Technology and Power Transmission and for Metal Casting and Forming, in co-operation with the respective departments of the BMW Group, developed an innovative aluminium-based electrical connection concept in the project LEIKO.

A sheet metal cage, which is an electromagnetic compatibility requirement anyway, enhances the mechanical stability of the plug and guarantees the long-term support of the contact pressure spring. Because the necessary contact force is no longer provided by the contact elements themselves, the originally problematic creep behaviour of aluminium turns into a contact stabilising, and thus, positive property. This, in turn, also guarantees a constant contact force over a lifetime of ten years.

To this end the researchers came up with a special wedge-shaped geometry for the aluminium contacts. The aluminium creep now leads to the two contacts snuggling closer and closer together over time, thereby rendering the electrical connection better yet. Moreover, the consistent use of aluminium alloys and the ingenious application of precious metal plating made it possible to relocate the formation of corrosion-prone local elements to less critical locations in the system.

A further problem with substituting aluminium for copper is its lower electrical conductivity. In the case of high-power onboard systems in particular, the cable cross-sections, which are about 60 per cent larger, need to be taken into account in the construction of cable ducts and feed-throughs. One positive thing the scientists discovered was that because aluminium is very pliable, the standard values from copper cable processing, where bending radii are set based on the diameter, could also be used for aluminium.

In order to determine the long-term behaviour of the coated aluminium contacts under even the rough conditions typical for motorised vehicles, the project partners, together with leading suppliers, have successfully initiated a further research project. Funded by the Bavarian Research Foundation (BFS), this project will deliver evidence on the aging behaviour and thus the suitability of the concept by 2012.

Initial results indicate that the material substitution will lead to significant improvements in weight, cost, and ultimately emissions. "We expect the high-voltage on-board systems of most electric vehicles to be based on aluminium by 2020. Aluminium will find its way into low-voltage onboard systems as well, because the price of copper will rise significantly with increasing demand," says Professor Udo Lindemann from the Institute of Product Development at the TU Muenchen.

The project finds its theoretical counterpart in the Collaborative Research Centre (SFB) 768, Managing Cycles in Innovation Processes, funded by the German Research Foundation (DFG). It aims to bundle competencies from computer science, engineering, economics and the social sciences in order to look into challenges at the interfaces of innovation processes along with partners from industry. The goal of this research is to use an interdisciplinary perspective to develop industry-relevant solutions in dealing with dynamic changes in company environments, as well as in company internal process landscapes.

Another aspect of the research conducted within SFB 768 is a student project to develop an electrically driven go-cart. In order to experience the manifold challenges of innovation management first-hand, the students started with a standard base structure and went through the entire development process for all subsystems of the vehicle. The results of the LEIKO project are also integrated into the student project – the entire high-voltage onboard system is implemented in aluminium.

The results are to be incorporated in the TUM electro vehicle MUTE, which will be presented at the IAA 2011.

Latest Issue :

May / June 2021